Program Highlights for year 2022
Field-effect transistor (FET)-based biosensors allow label-free detection of biomolecules by measuring their intrinsic charges. We previously reported the extremely low limit of detection on electrical field effect-based sensors using crumpled graphene. Here, we use FETs with a deformed monolayer graphene channel for the detection of various biomarkers.
We developed one-component, sequence-defined Ionizable Amphiphilic Janus Dendrimers (IAJDs) and their assemblies with mRNA. These Dendrimersome Nanoparticles (DNPs) were investigated for the delivery of mRNA for vaccines and nanotherapeutics.
A disordered material’s structure and macroscopic mechanical response are related in a non-trivial way. By studying a 2D jammed colloidal system under oscillatory shear, our study elucidates this link in the transition from elasticity to plasticity based on microstructural signatures.
Switching Néel vector orientations in antiferromagnets has been proposed as an ultrafast means of data storage, but the fundamental energy scales of switching cannot be evaluated without oriented measurements on single crystals. These single-crystal methods are vital for understanding if first-principles calculations can predict the energies and dynamics that govern these devices.
The main goal of this research is to reveal the atomic-scale origin of the low grain-boundary (GB) resistance in Li0.375Sr0.4375Ta0.75Zr0.25O3 (LSTZ0.75) perovskite solid electrolyte and to provide insights on overcoming the ubiquitous bottleneck of high GB resistance in other oxide solid electrolytes.
The UCI MRSEC team have developed the first electrically-fueled dissipative system that offers rapid kinetics, directionality, and unprecedented spatiotemporal control, closely mimicking systems found in nature.
Preparing students for careers inside and outside academia is a key mission for the Wisconsin MRSEC and its Advanced Materials Industrial Consortium (AMIC). AMIC sponsors student-led seed research projects to help students learn essential skills. AMIC companies suggest project areas, then company engineers work with MRSEC students to develop research proposals that leverage the student’s expertise.
Wisconsin MRSEC IRG 1 developed a new theory describing how sound waves couple two level systems together. Experiments using a superconducting qubit measured the coupling of many TLS, one at a time, and showed that they are consistent with the theory. Machine learning applied to simulations identified the atomic arrangements associated with TLS and showed that as the glass grows more stable, the TLS density decreases.
Temperature has been shown to be a critical factor impacting additive manufacturing (AM). During selective laser melting (SLM), the heat transfer and fluid flow affect grain growth and the microstructure of the printed material. Previous efforts have mostly relied on tuning parameters such as laser power and scan rate, but a more detailed understanding of temperature effects in AM is still lacking. In this Seed, we will probe and understand how dynamic and localized heating and cooling affect the microstructure of additive manufactured (AM) materials by operando temperature mapping and machine learning.
This work demonstrates the facile, on-demand manufacturing of polymer foams with desirable properties such as mechanical strength, controlled porosity, and varied composition.
Pages