Skip to content Skip to navigation

Recent Program Highlights

The research focus involves understanding how to integrate van der Waals materials like Bi2Se3 with industrially-relevant semiconductor materials like GaAs(001) using molecular beam epitaxy (MBE) for THz applications, as well as determining the chemical composition and bonding type of the Bi2Se3/GaAs(001) interface using density functional theory (DFT) calculations.

Here, diffusion of NMR spectroscopy, transmission electron microscopy, and cryogenic transmission electron spectroscopy were used to characterize porous cages in solution. A combination of the methods can be used to discriminate between assembled cages as opposed to decomposed or isomerized materials while dissolved in polar organic solvents, regardless of the metal cations used in their assembly.

Field-effect transistor (FET)-based biosensors allow label-free detection of biomolecules by measuring their intrinsic charges. We previously reported the extremely low limit of detection on electrical field effect-based sensors using crumpled graphene. Here, we use FETs with a deformed monolayer graphene channel for the detection of various biomarkers.

Subscribe to MRSEC RSS