Electronic nematicity, the spontaneous breaking of crystalline rotational symmetry, has been discovered in several strongly correlated electronic systems, including high Tc superconductors. Recently, several studies have suggested that the charge density wave in the kagome superconductor CsV3Sb5 breaks rotational symmetry—an intriguing possibility, as it would be a rare example of “three-state Potts nematicity,” in which there are three possible orientations in a hexagonal lattice. Here, MRSEC researchers at the University of Washington report that CsV3Sb5 is probably not nematic, but it is very sensitive to isotropic strain.