Program Highlights for year 2022
The resarch focus of this effort involved computationally designing a homotetrameric helical bundle to have a variety of net charges. The charged bundle variants showcase how charge state can be controlled for a common peptide structure, as well as the properties of the fibril nanomaterials constructed by the peptide building blocks.
Biological cells control spatial and temporal generation of active stresses to achieve diverse sought-after functionalities ranging from motility to cell division. Motivated by these observations IRG2 goal is to control of spatiotemporal patterns of active stresses and to endow soft materials with lifelike functionalities.
The self-assembly of biological molecules into large, but finite-size, superstructures is fundamental to life. A grand challenge for colloidal self-assembly is to produce colloidal monomers with valence-limited interactions, that have arbitrary angles and strengths, to produce structures with the precision, complexity and functionality of biological assemblies.
The area of two-dimensional (2D) materials research would benefit greatly from the development of synthetically tunable van der Waals (vdW) materials. While the bottom-up synthesis of 2D frameworks from nanoscale building blocks holds great promise in this quest, there are many remaining hurdles, including the design of building blocks that reliably produce 2D lattices and the growth of macroscopic crystals that can be exfoliated to produce 2D materials.
We studied graphene double layers separated by an atomically thin insulator. Under applied magnetic field, electrons and holes couple across the barrier to form bound magneto-excitons. Using temperature-dependent Coulomb drag and counterflow current measurements, we were able to tune the magneto-exciton condensate through the entire phase diagram from weak to strong coupling.
Analogous to a superconductor, the quantum anomalous Hall effect can transport electrons in a sample without dissipating any energy.
As new methods are established to synthesize atomically-thin quantum materials, it becomes necessary to develop a technique to take those materials and assemble them into complex structures.
This highlight demonstrates the gelation assembly of colloidal nanocrystals using uniquely developed ligands that can form a metal coordination linkage. Metal ions that are paired with ligand functional groups were used to control the assembly of nanocrystals from a stable dispersion to full spanning gel networks. The metal coordination linkage was reversed using temperature as an external trigger and enabled thermally switchable nanocrystal gel networks.
The Industrial Mentorship Program connects undergraduate students, graduate students and post-doctoral fellows to a mentor in industry. This program is designed to expose participants to fundamental research as it relates to societal and economic development; enable them to broaden their networks; and facilitate a successful transition into the workforce.
This highlight illustrates a key characterization advance realized at the Center for Dynamics and Control of Materials – temporally resolved light-induced microwave impedance microscopy.
Pages