Skip to content Skip to navigation

Program Highlights

Nano Mini-Exhibit

In 2012, Princeton University’s NSF-funded research center Princeton Center for Complex Materials (PCCM) and its partners the Princeton Public Library and  the New Jersey State Museum were awarded the NSF funded NISEnet Nano! Mini-Exhibit. Nano! is a new engaging exhibition for family

Liquid crystal order in the kagome lattice

The kagome lattice is an outstanding example of a frustrated magnet, a system in which the magnetic moments cannot satisfactorily align to minimize the energy. Its ground-state configuration has been a long-standing puzzle. Recent debate has focused on the relative stability of a valence bond-crystal, and an isotropic

Electron-blocking and Hole-blocking Wide-gap Heterojunctions to Crystalline Silicon

Solid-state devices rely on the control of the flow of electrons and holes at the interface (“heterojunction”) formed between different semiconductors. Silicon is the workhorse of the semiconductor industry. However, until now, creating a heterojunction between Si and other materials with a larger energy gap has been an intractable

High Sensitivity EPR with Superconducting Microresonators

Electron paramagnetic resonance (EPR) is commonly used to manipulate and measure the magnetic moments (or spins) of electrons.  IRG-D researchers at the Princeton Center for Complex Materials (PCCM) have demonstrated a 100 fold improvement in sensitivity to the electrons’ spins by combining long-coherence donor electrons in isotopically

Striving for Perfect Order in Shear-Aligned Block Copolymer Films

Block copolymer thin films are effective templates for fabricating large arrays of nanoscopic objects; for example, polymers which self-assemble into cylinders lying in the plane of the film yield striped patterns, which can be replicated in metal to yield nanowire grids which effectively polarize the short-wavelength

Pages