This highlight demonstrates the gelation assembly of colloidal nanocrystals using uniquely developed ligands that can form a metal coordination linkage. Metal ions that are paired with ligand functional groups were used to control the assembly of nanocrystals from a stable dispersion to full spanning gel networks. The metal coordination linkage was reversed using temperature as an external trigger and enabled thermally switchable nanocrystal gel networks.
The Industrial Mentorship Program connects undergraduate students, graduate students and post-doctoral fellows to a mentor in industry. This program is designed to expose participants to fundamental research as it relates to societal and economic development; enable them to broaden their networks; and facilitate a successful transition into the workforce.
This highlight illustrates a key characterization advance realized at the Center for Dynamics and Control of Materials – temporally resolved light-induced microwave impedance microscopy.
Based on the hypothesis that blending LAM- and CYL-forming block oligomers may yield stable network phases, molecular dynamics simulations are used to study binary blend self-assembly of AB-type diblock (n-tridecan-1,2,3,4-tetraol) and AB2-type miktoarm (5-octyl-tridecan-1,2,3,4-tetraol) amphiphiles.
Emerging semiconductors such as tin-based oxides have enormous application potential in devices, as they are transparent, support highly mobile electrons, and have wide “energy gaps”. Unlike better developed semiconductors, however, these materials are prone to harboring defects, which can limit essential properties such as electron mobility.
At the University of Chicago MRSEC, we demonstrate that controlling the molecular crystal hosting the active qubit is a powerful means for enhancing coherence.
At the University of Chicago MRSEC, we have demonstrated the self-assembly of charged nanocrystals into strongly electronically coupled supercrystals, a feature previously not possible with traditional insulating organic surface ligands.
A collaboration between the University of Chicago MRSEC groups of Jaeger, Patel, and Rowan showed that the complex modulus of a dense suspension of microparticles can be increased exponentially over several orders of magnitude by applying interval training during oscillatory shear, leading to a structural memory.
The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches.