Skip to content Skip to navigation

Program Highlights

Tailoring Topological Surface States

Topological crystalline insulators feature conducting surface states for electrons whose existence is protected by crystal symmetry.  Scanning probe microscopy experiments on SnTe reveal that such metallic topological states can coexist next to semiconducting regions.

Programming Dimensionality in Superatomic Materials

Featured as one of the “Ten Ideas That Will Change the World” in Scientific American  in 2016, the discovery of assembling site-differentiated, atomically precise clusters into dimensionally controlled materials opens a new way to design and program a next generation of functional nanomaterials.

Rotating van der Waals Heterostructures

IRG1 of the Columbia MRSEC seeks to understand the behavior of van der Waals heterostructures created by assembly of atomically thin layered materials. One important question in this effort is how the relative orientation between the layers affects multiple properties.

Coherent Flows in Confined 3D Active Isotropic Fluids

Navier-Stokes equations dictate that the conventional fluid flows only in response to an externally imposed gradient in stress or a body force. We developed a novel active fluid that is comprised of microtubules and energy consuming molecular motors kinesin.

Directing Actin Polymerization to Membranes

Biological membranes are deformed and shaped by proteins that assemble into higher-order scaffolds. These scaffolds target the force-generating polymerization of actin filaments to deform and shape the membrane.

RET Inspires Research Collaboration Between Middle School Students and MIT Research Group

The Research Experience for Teachers (RET) program at the MIT MRSEC immerses local science teachers in materials research on campus to increase their content knowledge, and develop pedagogical material for their classroom use.

Materials Deficient in Oxygen Show Promise in Magnetically Controlled Optical Devices

MIT MRSEC researchers, have created both polycrystalline and single-crystal films of iron-substituted metal oxides that show room temperature magnetism and magneto-optical properties depending on the oxygen pressure at which the films are grown and their resultant oxygen composition.

Using Light to Control the Viscoelastic Mechanical Properties of Gel-Like Materials

MIT MRSEC researchers have developed stimuli-responsive hydrogel materials that can change their mechanical properties upon exposure to light. Insights generated from these studies will aid in the development of programmable hydrogels with specific stress-relaxing or energy-dissipating properties.

Tuning the Stability of Electronic Defects in Semiconducting Oxides

MIT MRSEC researchers have demonstrated that the combined action of temperature and mechanical stress can tune the relative stability of electronic defects in semiconducting oxides.

Stretchable Spinal Cord Probes Offer New Tools to Study the Nervous System

Intellectual Merit: Currently neurological and neuromuscular disorders such as spinal cord injuries and Parkinson’s disease are poorly understood.  A impediment to advances in this area is a lack of materials and devices that would allow for precise long-term two-way communication with groups of neurons (nerve cells) in the body.

Pages