By employing redox-active and redox-inactive polymers in a mixed-dimensional heterostructure architecture, Northwestern University MRSEC IRG-1 has achieved vertical organic electrochemical transistors (vOECTs) for the first time.
By employing redox-active and redox-inactive polymers in a mixed-dimensional heterostructure architecture, Northwestern University MRSEC IRG-1 has achieved vertical organic electrochemical transistors (vOECTs) for the first time.
Northwestern University MRSEC IRG-2 has developed an efficient theoretical framework based on high-throughput density functional theory calculations and machine learning methods to accelerate the discovery of heteroanionic materials.
The Partnership for Research and Education in Materials between Navajo Technical University and the MRSEC based at Harvard focuses on developing culturally-informed, sustainable pathways into materials science-related careers and advanced studies for Navajo students.
A team at the Harvard MRSEC led by Bertoldi and Rycroft has developed a framework to design mechanical metamaterials with target nonlinear response. Neural networks were used to accurately learn the relationship between the geometry and nonlinear mechanical response of these metamaterials.
Here, diffusion of NMR spectroscopy, transmission electron microscopy, and cryogenic transmission electron spectroscopy were used to characterize porous cages in solution. A combination of the methods can be used to discriminate between assembled cages as opposed to decomposed or isomerized materials while dissolved in polar organic solvents, regardless of the metal cations used in their assembly.
The research focus involves understanding how to integrate van der Waals materials like Bi2Se3 with industrially-relevant semiconductor materials like GaAs(001) using molecular beam epitaxy (MBE) for THz applications, as well as determining the chemical composition and bonding type of the Bi2Se3/GaAs(001) interface using density functional theory (DFT) calculations.
Field-effect transistor (FET)-based biosensors allow label-free detection of biomolecules by measuring their intrinsic charges. We previously reported the extremely low limit of detection on electrical field effect-based sensors using crumpled graphene. Here, we use FETs with a deformed monolayer graphene channel for the detection of various biomarkers.
We developed one-component, sequence-defined Ionizable Amphiphilic Janus Dendrimers (IAJDs) and their assemblies with mRNA. These Dendrimersome Nanoparticles (DNPs) were investigated for the delivery of mRNA for vaccines and nanotherapeutics.
A disordered material’s structure and macroscopic mechanical response are related in a non-trivial way. By studying a 2D jammed colloidal system under oscillatory shear, our study elucidates this link in the transition from elasticity to plasticity based on microstructural signatures.
Switching Néel vector orientations in antiferromagnets has been proposed as an ultrafast means of data storage, but the fundamental energy scales of switching cannot be evaluated without oriented measurements on single crystals. These single-crystal methods are vital for understanding if first-principles calculations can predict the energies and dynamics that govern these devices.