Skip to content Skip to navigation

Program Highlights for year 2008

Electrons in Graphene can Travel 100 Times Faster than in Silicon

Mobility measures how fast electrons travel in a material when an electric field (i.e.

Tunable refraction

Materials with a negative refractive index can form super-resolution planar lenses, sub-surface cameras or compact resonators which are otherwise impossible to realize. MRSEC researchers have predicted for the first time a tunable negative-index material with low loss, using liquid crystals, whose operating wavelength can be changed by controlling the liquid crystal orientation.

Chemotaxis

Bimetallic gold/platinum nanorod motors spontaneously move towards hydrogen peroxide fuel when they are placed in a fuel gradient, the first time this behavior has been seen outside of the biological world. Download

Electronic Device Applications for Narrow Gap Semiconductors

Semiconductors with narrow energy gaps have electronic properties, including a high mobility and strong spin-orbit coupling, that are advantageous for electronic device applications. The switching speed of a field-effect transistor and the sensitivity of a geometrical magnetoresistor are improved by a high carrier mobility.

SeeS: Sooner Elementary Science and Engineering Club & Science Zone 2008

"I never knew I was so good in science. I'm going to be a research scientist when I grow up!"

The CRISP teaching molecular beam epitaxy (MBE)

CRISP, the Yale MRSEC, has constructed a safe, user-friendly, oxide molecular beam epitaxy facility that is simple enough for effective use by undergraduates, yet capable of preparing research-grade samples

Growth of epitaxial oxides on silicon(100): the role of strontium

Understanding the locations of atoms as they are deposited on a surface is critical for growing interfaces of electronic device quality.

Pages