Skip to content Skip to navigation

Program Highlights

Making Soft Matter Accessible: Teacher Workshops on Science & Cooking

The Harvard MRSEC engages K-12 teachers and students through the science of everyday materials. Through a collaboration with Bite-Scized Education, led by teacher Kate Strangfeld, the MRSEC co-develops workshops for teachers and after-school programs for K-12 students that are modeled on the Science and Cooking course developed by David Weitz and Michael Brenner,  and teach science through food and cooking.

Soft Bioelectronics for In Vivo Neural Probes

Existing high-resolution neural recording devices cannot achieve simultaneous scalability on both spatial and temporal levels due to a trade-off between sensor density and mechanical flexibility. A team led by Liu, Bertoldi, Kozinsky, and Suo has introduced a 3D stacking implantable electronic platform, based on perfluorinated dielectric elastomers and tissue-level soft multilayer electrodes, that enables spatiotemporally scalable single-cell neural electrophysiology.

UTK Knoxville MRSEC Partners with the National Society of Black Physicists to Bring Conference into the Laboratories

The National Society of Black Physicists recently held their Annual Conference, the largest academic meeting of minority physicists in the US in Knoxville, Tennessee.

Meet a Scientist Day: hands-on demos for preK-8 students

An outreach event led by CHARM postdocs and grad students drew almost 200 attendees in partnership with a local library. Students aged preK-8 participated in seven hands-on demonstration booths, including several booths that focused on materials science principles.

Phonon-mediated strong coupling between a three-dimensional topological insulator and a two-dimensional antiferromagnetic material

This research effort, carried out by the University of Delaware's MRSEC, provides a potential hybrid material platform for optoelectronic device applications in the THz frequency domain.

Rapid Modification of Porous Cages with Click Chemistry

The University of Delaware MRSEC has shown, for the first time, that click chemistry can be used to functionalize multiple families of porous cages.

Capillary forces and biomolecular condensates: Structure and function

Princeton researchers have demonstrated the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation (e.g. molecular motors), capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.

Unlocking High Capacity and Fast Na+ Diffusion of HxCrS2 by Proton-Exchange Pretreatment

Princeton researchers have demonstrated that acid pre-treatment of NaCrS2 to form a new phase (named HxCrS2) results in significant improvements to the material’s performance as a sodium battery electrode.

Proximity-induced superconductivity in epitaxial topological insulator/superconductor heterostructures

The search for an unusual form of superconductivity known as topological superconductivity has attracted a great deal of attention of the quantum materials community because of its fundamental novelty and potential applications in fault-tolerant quantum computing technology.

Electrocaloric Effect of Perovskite High Entropy Oxide Films

Pb(Hf0.2Zr0.2Ti0.2Nb0.2X0.2)O3, a high-entropy perovskite, undergoes an entropy-driven phase transformation when X=Mn while X=Al always contains minor second phases in bulk ceramics.

Pages