Skip to content Skip to navigation

Program Highlights

IRG1: Increased Stability of CuZrAl Metallic Glasses Prepared by Physical Vapor Deposition

One of the main drawbacks of metallic glasses is their low thermodynamic stability, which limits their formability and service life.  Recently, experiments by members of the Wisconsin MRSEC showed that organic glasses with high thermodynamic stability can be synthesized via physical vapor deposition (PVD) onto a substrate at a controlled temperature.  Now, this team of researchers has used molecular dynamics simulations to predict that the same PVD methods can enhance the stability of metallic glasses. 

Wisconsin MRSEC Researchers and Teachers Collaborate to Create Digital Educational Games

The Wisconsin MRSEC has developed research-inspired educational digital games that are each being played over 1900 times/week. Atom Touch teaches students about atom behavior, bonding, and forces. Crystal Cave lets students explore how molecules form repeating patterns to grow into large crystals.  During development, local K-12 teachers provided input on how to make the games more engaging for student learning.

World Science Festival: Crystals, Colloids and Fun!

NYU-MRSEC investigators along with research scientist from the BioBus/BioBase organization mentored nine high school students as part of a two month peer-mentorship program.  The idea, to train high school students in optics, CAD/3D printing and basic of microscopy including applications in materials science (crystals and colloids).

Phases of Matter – Adult Coloring Book

MRSEC investigators team-up to create an adult coloring book. The coloring book, “Phases of Matter,” designed to help the general pubic understand physics and phase behavior.

Freezing on a Sphere

A crystal is defined by the regular and periodic ordering of the atoms, molecules, or particles that compose them.  If bent or strained, this order and regularity is disturbed, and defects appear that relieve some of the applied stress.

Simple Coacervation of a Mussel-inspired Peptide Improves Wet Adhesion

Upon spontaneous deposition on surfaces underwater and moderate compression, single-component coacervates of adhesive peptide mimics (mfp-3S-pep) display orders of magnitude improvement compared with un-coacervated native (mfp-3S) or synthetic peptides.

UCSB MRSEC Maker Activities

In response to the needs of teachers, the UCSB MRSEC has placed a new focus on the development of maker activities for K-12 students. These encourage the integration of maker activities into the school curriculum as well as within out-of-school environments (Maker Faires), supporting the adoption of Next Generation Science Standards (NGSS).

Atomically-precise graphene etch masks for 3D integrated systems from 2D material heterostructures

Atomically-precise fabrication methods are critical for the development of next-generation technologies which rely on nanomaterials. New methods are particularly needed in van der Waals (vdW) heterostructures where it is necessary to individually address each molecular layer to form devices with nanometer thicknesses. The Illinois MRSEC has demonstrated a highly selective etching technique using graphene as a monolayer etch stop within vdW heterostructures. This technique is a versatile and simple nanofabrication process that bridges the challenging technological divide between atomic-precision and wafer scale uniformity.

Surface state anisotropic magnetoresistance in proximity magnetized topological insulators

Information stored in magnetic materials is often read-out by measuring changes in magnetoresistance. Large magnetoresistance effects are thus important for establishing well-defined memory states within materials that store information. The Illinois MRSEC discovered a new and large magnetoresistance effect generated when a topological insulator (TI) is placed on top of an ordinary magnetic insulator. The surface of the TI becomes magnetic and exhibits a  so-called surface-state anisotropic magnetoresistance. This effect is two-orders of magnitude larger than previous effects induced in similar materials.

Two-Dimensional Itinerant Ising Ferromagnetism

Ferromagnetism in monolayer van der Waals materials (vdW) has recently drawn tremendous attention since they were first discovered last year. Most of the materials found, however, are semiconductors and extremely air sensitive, so a vdW material that is metallic and stable under ambient conditions is highly desirable.

Pages