Skip to content Skip to navigation

Program Highlights

Active Emulsion

Stabilized emulsions containing the oscillating Belousov - Zhabotinsky chemical reaction (BZ) show interesting dynamics. Each drop acts as an independent chemical clock. However, they chemically communicate and exhibit collective behavior. In (a) three photos of the same hexagonally packed 100 micron diameter BZ drops are shown 80 seconds apart.

Chemical Modification of Epitaxial Graphene

The ability to modify the electronic structure and properties of graphene is an important step towards the large scale fabrication of electronic devices based on graphene technology.

NYU MRSEC E&HR NYAS Outreach

Co-sponsored inaugural Gotham-Metro Condensed Matter Meeting Student-led one-day conference in hard and soft matter physics held at the New York Academy of Sciences

Making colloidal helices

Need microscopic swimmers for transport and mixing in micro- and nanofluidic devices.

Nanoscale Depth-Resolved Point Defects at SrTiO3 Growth Surfaces

Chemically-etched SrTiO3 is widely used as a clean, atomically-smooth template for epitaxical growth of most complex oxides. Since native point defects in these materials are electrically-active and mobile, there is a need to lower their density.

Site-Specific Stamping of Graphene

Graphene (2-D carbon) is being considered for spintronics due to its low spin-orbit coupling. While graphene-based devices are being made one-at-a-time successfully, there is a need for a high-throughput fabrication method.

X-ray Characterization of Self-Assembled Nanoscale Dielectrics

Self-Assembled Nanoscale Dielectric (SAND) thin films are emerging as leading contenders in applications for organic and hybrid thin film transistors, allowing for low operating voltages and ideal device characteristics in next-generation flexible electronics.Â’  Dielectric properties are highly dependent on the behavior of the counter-anions within the film, specifically their pos

Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes

The plasmonic properties of noble metal nanoparticles have potential uses in a wide variety of technologies based on their optical response.Â’  Recent collaborative efforts of the NU-MRSEC demonstrate that correlated localized surface plasmon resonance (LSPR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements can be used to obtain the optical res

Pages