Skip to content Skip to navigation

Program Highlights

Chemical Modification of Epitaxial Graphene

The ability to modify the electronic structure and properties of graphene is an important step towards the large scale fabrication of electronic devices based on graphene technology.

NYU MRSEC E&HR NYAS Outreach

Co-sponsored inaugural Gotham-Metro Condensed Matter Meeting Student-led one-day conference in hard and soft matter physics held at the New York Academy of Sciences

Making colloidal helices

Need microscopic swimmers for transport and mixing in micro- and nanofluidic devices.

Nanoscale Depth-Resolved Point Defects at SrTiO3 Growth Surfaces

Chemically-etched SrTiO3 is widely used as a clean, atomically-smooth template for epitaxical growth of most complex oxides. Since native point defects in these materials are electrically-active and mobile, there is a need to lower their density.

Site-Specific Stamping of Graphene

Graphene (2-D carbon) is being considered for spintronics due to its low spin-orbit coupling. While graphene-based devices are being made one-at-a-time successfully, there is a need for a high-throughput fabrication method.

Chemical Doping of Organic Molecular Films for Photovoltaic Applications

To advance the application of organic molecular films in solar cells, PCCM researchers have improved their conductivity and carrier injection by n-doping the acceptor layer in a donor-acceptor cell. The acceptor was a fullerene layer, C60, while the dopant was the low-ionization-energy molecule decamethylcobaltocene (CoCp2*).

3D Topological Dirac Insulator with a Quantum Spin Hall Phase

An insulator is usually described as a material with completely filled electronic bands that do not contribute to any interesting transport behavior.

MRSEC Education Directors Network Meeting Hosted by PCCM

The MRSEC Education Directors conducted a workshop at Princeton (September 14-17, 2008), chaired by PCCM's Dr. Dan Steinberg.

Pages