The ability to precisely predict how molecular structure influences the microstructure of polymeric materials is the key towards the custom tailoring of desirable materials properties. Molecular dynamics simulations with atomistic level models were performed to design “high-χ” block oligomers that can self-assemble into 1-5 nm domains for next generation microelectronics applications. Simulations show that the microstructures formed by these oligomers can be tuned by varying the molecular weight and the chain architecture. The results are being used to guide the synthesis of block oligomers for desired microstructural morphologies and domain periods. In particular, these results open a path to significantly smaller features than previously obtained by block polymer self-assembly.