Skip to content Skip to navigation

Program Highlights for year 2018

Nebraska MRSEC Puts a “Spark” in Summer Learning

In Summer 2017, Nebraska MRSEC partnered with the Foundation for Lincoln Public Schools to offer a new, STEAM-based summer learning program. Spark Summer Learning provides opportunities for students in grades K-5 to explore science, technology, engineering, art, and math in an immersive setting, engaging students in problem-based learning through hands-on “maker” projects.

Optical Control of Polarization in Hybrid 2D-Ferroelectric Structures

Switchable electric polarization of ferroelectric materials can serve as a state variable in advanced electronic systems, such as non-volatile memories and logic. Control of ferroelectric polarization by external stimuli is the key component for these systems.

Direct Observation of Ferrimagnetism in a Multiferroic Hexagonal Ferrite

Multiferroics is a class of materials that exhibits a coexistence of electric and magnetic polarizations.  Coupling of these polarizations is potentially useful for energy-efficient information storage and processing. Hexagonal rare-earth ferrites (h-RFeO3, where R is rare-earth element and Fe is iron) are new family of multiferroic materials.

Nebraska MRSEC Facility: Synthesis and Characterization of Graphene-Like Boron-Carbon-Nitrogen Monolayers

The emergence of two-dimensional (2D) materials, which are only one atom or one structural unit cell thick, has stimulated an enormous range of research effort. The well-known example is graphene – a zero band gap semiconductor, which exhibits outstanding charge carrier mobility. However, the absence of a band gap is a major hindrance in implementing graphene in 2D electronics.

Threading Atom-Wide Wires Into 2D Materials

Cornell University researchers and collaborators have discovered – somewhat accidentally – a method for inserting a one-dimensional (1D) semiconductor channel into the “fabric” of a material that is only a few atoms thick.

Pages