Pb(Hf0.2Zr0.2Ti0.2Nb0.2X0.2)O3, a high-entropy perovskite, undergoes an entropy-driven phase transformation when X=Mn while X=Al always contains minor second phases in bulk ceramics. Thin films with X=Al show a narrow ferroelectric hysteresis loop and relaxor-like characteristics, i.e. a high dielectric permittivity of ~2000 and low dielectric loss. These are the characteristics needed for device applications.
Indirect measurements (based on Maxwell relations) yield a electrocaloric temperature change of 8.4 K at 180°C under an applied electric field of 1186 kV cm−1. The temperature changes in this initial example of a high-entropy electrocaloric oxide are already comparable to those of other oxide-based materials. The huge design space available for optimization of high-entropy formulations now offers opportunities to exceed known electrocalorics in terms of both size of response and operating temperature range.
Center for Nanoscale Science
The center supports collaborative, interdisciplinary research efforts on nanoscale materials. Principal research activities are organized into two interdisciplinary research groups: 2D Polar Metals & Heterostructures and Crystalline Oxides with High Entropy.