Skip to content Skip to navigation

Program Highlights

Inverse Design of Mechanical Metamaterials with Target Nonlinear Response via a Neural Accelerated Evolution Strategy

A team at the Harvard MRSEC led by Bertoldi and Rycroft  has  developed  a  framework  to  design mechanical  metamaterials  with  target  nonlinear response. Neural networks were used to accurately learn  the  relationship  between  the  geometry  and nonlinear   mechanical   response   of   these metamaterials.

Monitoring the Solution Persistence of Porous Coordination Cages with Diffusion NMR Spectroscopy and Cryogenic Transmission Electron Microscopy

Here, diffusion of NMR spectroscopy, transmission electron microscopy, and cryogenic transmission electron spectroscopy were used to characterize porous cages in solution. A combination of the methods can be used to discriminate between assembled cages as opposed to decomposed or isomerized materials while dissolved in polar organic solvents, regardless of the metal cations used in their assembly.

Bi2Se3 Growth on (001) GaAs Substrates for Terahertz Integrated Systems

The research focus involves understanding how to integrate van der Waals materials like Bi2Se3 with industrially-relevant semiconductor materials like GaAs(001) using molecular beam epitaxy (MBE) for THz applications, as well as determining the chemical composition and bonding type of the Bi2Se3/GaAs(001) interface using density functional theory (DFT) calculations.

Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3

The main goal of this research is to reveal the atomic-scale origin of the low grain-boundary (GB) resistance in Li0.375Sr0.4375Ta0.75Zr0.25O3 (LSTZ0.75) perovskite solid electrolyte and to provide insights on overcoming the ubiquitous bottleneck of high GB resistance in other oxide solid electrolytes.

Electrically Fueled Active Materials

The UCI MRSEC team have developed the first electrically-fueled dissipative system that offers rapid kinetics, directionality, and unprecedented spatiotemporal control, closely mimicking systems found in nature.

Disproving Paradigms: The Rules of Morphogenesis (“Rules of Life”)

Since the 1980s, it has been assumed that the architecture of the mammary gland is defined by prealigned fibers of collagen, which were posited to serve as a template for the formation of the mammary epithelial tree. Princeton researchers tested the validity of this paradigm.

Twisted bilayer WTe2: a Moiré Luttinger Liquid in Two-Dimensions

In an experiment related to the theory of Luttinger Liquids (LLs), a team led by Princeton University physicists and chemists reports the realization of a one-dimensional linear array of LLs in a moiré superlattice – a new quantum state in an engineered structure made from a known material.

Strong coupling between a topological insulator and a III-V heterostructure at terahertz frequency

This research focuses on theoretical prediction of strong coupling between the THz excitations in a topological insulator (TI) and a III-V quantum well, providing a potential material platform for optoelectronic device applications in the THz frequency domain.

Computational Design of Tetrahelical Peptide Bundle Variants Spanning a Wide Range of Charge States

The resarch focus of this effort involved computationally designing a homotetrameric helical bundle to have a variety of net charges. The charged bundle variants showcase how charge state can be controlled for a common peptide structure, as well as the properties of the fibril nanomaterials constructed by the peptide building blocks.

Spatiotemporal control of active materials

Biological cells control spatial and temporal generation of active stresses to achieve diverse sought-after functionalities ranging from motility to cell division. Motivated by these observations IRG2 goal is to control of spatiotemporal patterns of active stresses and to endow soft materials with lifelike functionalities.

Pages