The Structure and Properties of Amorphous Indium Oxide

D. Bruce Buchholz¹, Qing Ma², Diego Alducin³, Arturo Ponce³, Miguel José-Yacamán³, Rabi Khanal⁴, Julia **Medvedeva**⁴, Robert P.H. **Chang**¹

¹Northwestern University Materials Research Science & Engineering Center ²DND-CAT, Northwestern Synchrotron Research Center , APS, Argonne National Laboratory ³Department of Physics and Astronomy, University of Texas at San Antonio ⁴Department of Physics, Missouri University of Science & Technology

100

Indium oxide thin films deposited by Pulsed Laser Deposition have local maxima in carrier mobility in the transition region between amorphous and crystalline phases. Using Molecular Dynamics Liquid Quench simulations, and validated by agreement with Extended X-ray Absorption Fine Structure measurements, a possible mechanism for this observation has been proposed. As the cooling rate in the MD simulations is decreased the amorphous structure changes from containing small isolated InO₆ clusters, to ones containing InO₆ chains, and finally to those containing large isolated InO₆ clusters. Local maxima in carrier mobility are also observed in the transition regions for more complex oxides, such as zincindium-tin oxide.

1.0