Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS₂

In Soo Kim¹, Vinod K. Sangwan¹, Deep Jariwala¹, Joshua D. Wood¹, Spencer Park¹, Kan-Sheng Chen¹, Fengyuan Shi¹, Francisco Ruiz-Zepeda², Arturo Ponce², Miguel Jose-Yacaman², Vinayak P. **Dravid**¹, Tobin J. **Marks**¹, Mark C. **Hersam**¹, and Lincoln J. **Lauhon**¹

¹Northwestern University Materials Research Science & Engineering Center ²Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249

Ultrathin transition metal dichalcogenides (TMDCs) of Mo and W show great potential for digital electronics and novel optoelectronic applications, but the influence of stoichiometry on the electrical and optical properties has been largely overlooked. The stoichiometry of monolayer CVD-grown MoS₂ was systematically varied and correlated with the associated changes in optical and electrical properties. Surprisingly, the characteristics of transistor devices were *improved* by utilizing more defective (less stoichiometric) material.

The morphology of monolayer MoS₂ crystals evolves with sulfur content. Microelectrodes are used to probe properties of single "flakes".

NSF Grant #DMR-1121262 MRSEC

