Brandeis MRSEC BioInspired Soft Materials

21 Primary Participants

International Laboratory Primary Collaborators

> color code: theory computation soft matter experiment biology / chemistry

Secondary Participants

MRSEC Bioinspired Soft Materials

3

RSEC

Ν

6 6

(83)

Brandeis BioInspired Soft Materials MRSEC

Center Vision

Elucidate the *Rules of Life* to engineer new materials that capture the remarkable functionalities found in living organisms.

IRG1: Self-Limiting Assembly

curved blocks

Build multiple classes of structures
 of arbitrary, but self-limited size using a minimal number of distinct building blocks.

Geometrically-programmed, self-limiting assemblies

Functional size-controlled nanostructured materials from biology

shells/capsules

transport & delivery

nanostructured dielectrics

photonics

fibers/bundles

mechanics

Geometrically-programmed, self-limiting assemblies

Thrust 1: Curvature-Controlled assembly (self-closing assembly)

Thrust 2: Frustration-Controlled assembly (finite assembly with open edges)

Core material platform: DNA origami

DNA folds into self-assembling triangle building block

triangles assemble by lock-and-key interactions, via blunt-end stacking

key attributes:

- sub-nm-precision geometry
- interactions are: valence-limited, chemically specific, *k*_B*T*-precision
- programmed deformability

Fraden, Hagan, Dietz

Thrust 1: Curvature-Controlled (Self-Closing) Assembly

<u>Goals:</u>

-Target self-closing architectures with arbitrary curvature

-Maximize **economy** = assembly size / min # block species (Enabled by generalized symmetry-based theory)

 $K_{\rm G}$ = Gaussian curvature

Quasi-equivalence: Icosahedral body plan

Caspar & Klug (1962) Cold Spring Harbor Symp. Quant. Biol. **27,** 1-24

Buckminster Fuller 1967 Montreal World' Fair

Synergy: Theory / Computation / Experi

Dietz, Fraden, Rogers, Rodal, Hagan, Ivanovic, Santangelo, Xu

Creating a new assembly paradigm requires teamwork

IRG1: Self-Limiting Assembly

IRG2: Soft Active Materials - Bioinspiration

Vision: Animate the Inantimate

Brandeis BioInspired Soft Materials MRSEC

Center Vision

Elucidate the *Rules of Life* to engineer new materials that capture the remarkable functionalities found in living organisms.

IRG2: Soft Active Materials

active composites

Design active stresses through 3D active composites

Measure active stresses

Control active stresses in space and time to generate desired functions.

IRG2: Soft Active Materials

Vision: Active and passive building blocks can be rationally engineered to build robust 3D active materials, whose dynamics and mechanics can be tuned in situ using control theory.

Thrust 1 : Active Viscoelastic Gel

Integration of soft matter expertise and biochemistry expertise yielded a designer active viscoelastic gel

Actin

Microtubule

Microtubule Actin

Thrust 1 : Active Viscoelastic Gel

Dramatic change in the mesoscale stress as a function of one continuously changing material parameter

Increasing actin concentration

First step towards making a vesicle capable of directed motility

Thrust 2 : Measuring active stress

Quantifying Mesoscale active stress is essential

3D active nematic

Thrust 2: Using interface fluctuations

2 phase mixture of PEG + Dextran

50um

Thrust 3 : Control of Active Stress

Vision: Establish rational design principles for building 3D adaptive active matter through engineering measurement and <u>CONTRO</u> of emergent active stresses

Light as the control signal

Optogenetics: Active fluid with light activated motor proteins

No cross linking, no force

Biomolecular Engineering

Light as the control signal

Optogenetics: Active fluid with light activated motor proteins

Temporal control

Spatial control

Spatiotemporally patterned light Fraden, Dogic

Machine learning forecasting of active nematics

Zhou Z, et al. Machine learning forecasting of active nematics. Soft Matter. Published online 2021:10.1039.D0SM01316A. doi:10.1039/D0SM01316A

Forecasting model predicts key events

Zhou Z, et al. Machine learning forecasting of active nematics. Soft Matter. Published online 2021:10.1039.D0SM01316A. doi:10.1039/D0SM01316A

Thrust 3: Control of Active Stress

Active control of cell migration/polarization

Thrust 3: Control of active stress

Model predictive optimal control theory

based on hydrodynamic theory of the active fluid

Reference state penalty

$$\mathcal{H} = \frac{1}{2} \left(\mathbf{Q} - \mathbf{Q}^* \left(\theta \right) \right)^\top \mathbf{C} \left(\mathbf{Q} - \mathbf{Q}^* \left(\theta \right) \right) + \frac{1}{2} \left(\mathbf{u} - \mathbf{u}^* \left(\theta \right) \right)^\top \mathbf{D} \left(\mathbf{u} - \mathbf{u}^* \left(\theta \right) \right)$$

Control penalty
$$+ \frac{1}{2} \left(\alpha - \alpha_0 \right)^2 + \boldsymbol{\nu} \cdot \left(-R\partial_t \mathbf{u} + \nabla^2 \mathbf{u} - \nabla P - \nabla \cdot \alpha \mathbf{Q} \right) +$$
input
$$\phi \left(\nabla \cdot \mathbf{u} \right) + \boldsymbol{\psi} \cdot \left(\partial_t \mathbf{Q} + \nabla \cdot \left(\mathbf{u} \mathbf{Q} \right) - \left(\mathbf{Q} \boldsymbol{\Omega} - \boldsymbol{\Omega} \mathbf{Q} \right) - \lambda \mathbf{E}^\tau - \mathbf{H} \right)$$

stress-actuated counterclockwise to clockwise transition, t=-1

Thrust 3: Control of active stress

Model independent control Machine learning based forecasting

IRG2 team

Vision: Establish rational design principles for building 3D adaptive active matter through engineering measurement and control of emergent active stresses

Synergy: **Theory IRG2** leader **Biomolecular Engineering** Bisson, Bradshaw, Ramirez San-Juan, Goode Baskaran, Chakraborty, Kondev, Powers, Ramaswamy **Materials Synthesis** Dogic, Duclos, Ross Rationa Machine Design learning Engineering/Microfluidics Blair, **Computation** Fraden Hong, Wilmes Fai, Hagan

MRSEC iSuperSeed2 update: SciLinkR

SciLinkR is a national web-based tool that simplifies outreach and promotes science:

- SciLinkR matches scientists with the public and creates a repository of outreach reports that credit the scientist who engage in outreach, document best practices, and inspire new science outreach
- Recruited 250 active users to platform through talks and social media, made nationwide connections.

bioinspired

MRSEC

SciLinkR most benefits outreach professionals

 Outreach professionals seek a platform that organizes and shares coordination, description, and assessment of events/engagements.

Recommendations for next steps

- Collaborating with a national organization for outreach professionals, like <u>ARIS</u>, for recommendations on how to utilize and scale SciLinkR.
- SciLinkR as a database of engagements that collect metrics
- Utilizing a SciLinkR-type platform for the coordination and reporting of volunteer opportunities.

Center for Advancing Research Impact in Society (ARIS) https://www.researchinsociety.org/

