Interdisciplinary materials research and education addressing fundamental problems of importance to society

Materials Research Science and Engineering Centers are supported by the National Science Foundation (NSF) to undertake materials research of scope and complexity that would not be feasible under traditional funding of individual research projects.

THESE CENTERS:
- require outstanding research quality, intellectual breadth, interdisciplinarity, flexibility in responding to new research opportunities, support for research infrastructure, and they foster the integration of research and education in the materials field;
- address fundamental, complex problems of intellectual and societal importance,
- contribute to national priorities by fostering active collaboration between academia and other sectors, and
- constitute a national network of university-based Centers in materials research.

Center Characteristics

The MRSECs constitute a spectrum of coordinated Centers of differing scientific breadth and administrative complexity that may address any area (or several areas) of materials research.

- Each MRSEC encompasses one or more **Interdisciplinary Research Groups (IRGs)**.
- Each IRG involves several faculty members and associated researchers addressing a major topic in materials research.
- In each IRG, sustained support for interactive effort by several participants with complementary backgrounds, skills, and knowledge is critical to progress.
Each MRSEC also incorporates most or all of the following activities to an extent commensurate with the size of the Center:

- Programs to stimulate interdisciplinary education, including research experiences for undergraduates accessible to students from other institutions, and the development of human resources (including support for under-represented groups).
- Active cooperation with industry, other institutions, and other sectors, including international collaborations, to stimulate and facilitate knowledge transfer among the participants and strengthen the links between university-based research and its application.
- Support for shared experimental facilities, properly equipped and maintained, and accessible to users from the Center and elsewhere.

Each MRSEC has the responsibility to manage and evaluate its own operation with respect to program administration, planning, content and direction.

NSF support is intended to promote optimal use of university resources and capabilities, and to provide maximum flexibility in setting research directions, developing cooperative activities, and responding quickly and effectively to new opportunities. To this end, NSF encourages MRSECs to include support for junior faculty, high-risk projects, and emerging areas of interdisciplinary materials research.

MRSEC Review and Awards

MRSECs are reviewed initially as pre-proposals, then by invitation as full proposals. See the latest MRSEC Proposal Solicitation (NSF 07-563) for details. NSF does not normally support more than one MRSEC based at any one institution. Awards range in size from about $1 million to $5 million per year and are made for an initial period of up to six years. Renewed NSF support will be awarded only on the basis of comprehensive, competitive merit review. Awards for the FY 2008 competition are expected be announced in August 2008.

For more information: http://www.mrsec.org
NSF Materials Research Science and Engineering Centers

University of Alabama - Center for Materials for Information Science
(Director: William H. Butler)

The Center investigates new materials with potential applications in information technology. It supports development of instructional materials for middle school students by teachers and MRSEC faculty, and a summer research program for faculty and students from Historically Black Colleges and Universities. The MRSEC is an integral part of MINT, the Center for Materials for Information Technology that serves as a resource for the information storage industry.

IRG 1 Dynamics and Transport in Nanostructured Magnetic Materials (Leader: Arunava Gupta)
Spin-transport through confined geometries; control of nanoscale magnetism through spin-polarized currents; investigation of magnetic oxides as candidates for spintronic devices.

IRG 2 Materials for Information Storage Media (Leader: David Nikles)
Dendrimer films for probe-based charge storage; fundamentals of substrate/dendrimer/overlayer interactions; FePt nanoparticles for self-assemblying patterned magnetic recording media.

Brown University – Micro- and Nanomechanics of Materials
(Director: William A. Curtin)

The Center investigates the mechanics in thin films and bulk materials through a combination of experimental and computer modeling techniques. The Center has a broad spectrum of educational and outreach programs, including the very successful BrownOut program that brings hands on demonstrations to local K-12 science and math classes.

IRG 1 Stress in Thin Films and Small Scale Structures (Leader: Eric Chason)
Focuses the growth and stability of surfaces or surface domains in nanostructured materials and the time evolution of stress during growth of thin films with non-epitaxial microstructures.

IRG 2 Multiscale Mechanics of Complex Microstructures (Leader: Allan Bower)
Focuses on the application of novel computational and experimental techniques to elucidate the mechanics of deformation and failure in complex multiphase and Nanoscale microstructures.

University of California at Santa Barbara - MRSEC
(Director: Craig Hawker)

The Center investigates a wide range of materials including new semiconductors for microelectronics, novel nanostructures for high speed communication devices and advanced polymeric materials. Significant effort is devoted to successful K-12 and International Outreach programs. Active collaborations exist with a variety of small to large companies. These activities have a direct benefit to the greater Santa Barbara community.

IRG 1 Specific, Reversible and Programmable Bonding in Supra- and Macromolecular Materials (Co-Leaders: Luc Jaeger and Matt Tirrell)
Identifies new experimental and computational methods for precisely controlling the structure and properties of materials based on directed and reversible interactions.

IRG 2 Oxides as Semiconductors (Co-Leaders: Jim Speck and Chris Van de Walle)
Focuses on the theory, growth, and application of ultra-pure binary oxides as new wide-band-gap semiconductors.
IRG 3 **Soft Cellular Materials (Co-Leaders: Gary Leal and Glenn Frederickson)**
Seeks to use tailor made/functionalyzed nanoparticles and block copolymers, in association with polymer blends, to develop new soft materials with precisely controlled cellular structures.

IRG 4 **Nanostructured Materials by Molecular Beam Epitaxy (Co-Leaders: Arthur Gossard and Eliot Brown)**
Examines the development of all-epitaxial metal/semiconductor nanocomposite systems for potential applications in high speed and Terahertz technology.

California Institute of Technology – Center for the Science and Engineering of Materials (Director: Harry A. Atwater)
The Center supports an interdisciplinary research program on advanced materials, as well as a wide range of educational activities, including outreach to minority communities in California both at the pre-college and college level, and development of pre-college instructional materials.

IRG 1 **Ferroelectric Photonic Materials (Leader: Kaushik Bhattacharya)**
Pursues the understanding of nonlinear optical interactions in ferroelectric photonic devices and the application of these interactions to make compact all optical switches and modulators.

IRG 2 **Patterns, Gradients, and Signals in Soft Biomaterials (Leader: David Tirrell)**
State of the art biosynthesis, micromechanical methods, rheological studies, cell biology, and theoretical and computational methods are combined to elucidate the interrelated roles of biochemical and biophysical factors in controlling cellular response to engineered biomaterials.

IRG 3 **Advanced Structural Metals with Nanoscale Architecture – Glasses, Composites, and Cellular Foams (Leader: William Johnson)**
This IRG combines materials synthesis and processing from the liquid and solid states, unique mechanical testing and characterization methods, atomistic molecular dynamics simulations, analytical theories, and finite element modeling, to design and create a new class of novel structural engineering materials.

Carnegie Mellon University – MRSEC (Director: Gregory Rohrer)
This MRSEC is dedicated to the understanding and control of interface dominated materials properties with emphasis on the study of grain boundary networks that determine the performance of many polycrystalline materials. The Center has extensive collaborations with industry and national laboratories, as well as important international collaborations.

University of Chicago - Materials Research Center (Director: Sidney Nagel)
The MRSEC at the University of Chicago focuses on the manipulation of structural and dynamic properties of materials connected through hierarchies of length scales. Potential applications include the design of the next generation of functional materials, from cooperative spin systems and self-assembled nanostructures to bio-inorganic hybrid materials and biochips. The Center has a strong education outreach program from the K-12 level on up that emphasizes attracting and keeping women and minorities in science, and it fosters public science education through a partnership with the Midwest’s premier science museum.
IRG 1 Fluid Flows: From Singularities to Microscales (Co-Leaders: Leo Kadanoff and Ka Yee Christina Lee)
Explores the behavior of materials in which deformation is controlled by mathematical singularities, and examines flow structures for both single- and multi-phase fluid systems in confined or restricted geometries.

IRG 2 Hierarchically Assembled Molecular Materials (Co-Leaders: Philippe Guyot-Sionnest and Steven Sibener)
Aims to design, develop, and implement hierarchical materials, composed of molecular assemblies on surfaces, that express novel functions.

IRG 3 Jamming and Slow Relaxation in Materials far from Equilibrium (Co-Leaders: Thomas Rosenbaum and Sidney Nagel)
Investigates the feedback between structural properties and dynamical response that leads to the distinctive behavior of a diverse class of materials from classical granular materials to quantum Hall ferromagnets.

IRG 4 Bio-Interfacial Science (Co-Leaders: Brian Kay and Milan Mrksich)
Develops new routes for designing and controlling the interface between biological entities and man-made materials, including development of bio-chips for quantitative characterization of biological activities and the assembly of protein units for novel nanostructured materials.

University of Colorado - Liquid Crystal Materials Research Center (Director: Noel A. Clark)
The Colorado Center advances basic liquid crystal and soft materials science and seeks enhanced capabilities for electro-optic, nonlinear optic, chemical and other applications of liquid crystals. Industrial interaction focuses on fostering of and collaboration with U.S. display and telecom industries. The Center operates a vigorous education outreach program featuring science shows for the K-12 audience, and "Materials Science from CU", a program of traveling physical science enrichment classes reaching about 8,000 Colorado K-12 students/year.

Columbia University – Center for Nanostructured Materials (Director: Irving P. Herman)
Research in the Center addresses the science and technology of how nanoparticles of complex metal oxides can be combined to form useful films. Participants from several academic institutions and industrial concerns in the New York metropolitan area strengthen the Center's research and human resources. The MRSEC has a very active education and outreach effort, which includes research experiences for undergraduates and high school teachers. Visits to New York City high schools and middle schools introduce students to the world of materials through exciting demonstrations.

Cornell University – Cornell Center for Materials Research (Director: Melissa Hines)
The major theme of Cornell MRSEC is Mastery of Materials at the Atomic and Molecular Level. New ways to synthesize, characterize and understand interfaces and surfaces at the atomic and molecular scales must continue to be invented and exploited to enable forefront discoveries in many fields. The center is aided in these tasks by extensive shared facilities on campus supported by a large interdisciplinary materials community extending well beyond specific MRSEC projects. The center supports an exceptionally strong education program for pre-K-12, undergraduate and graduate students and the public.

IRG 1 Controlling Electrons at Interfaces (Co-Leaders: L. Hector Abruña and Dan Ralph)
Develops an understanding and control of the electronic properties of interfaces that have major scientific and technological importance, so as to better manipulate electron and spin transport on and through the interfaces.
IRG 2 Photonic Building Blocks from Multiscale Materials (Co-Leaders: Alex Gaeta and Ulrich Wiesner)
This IRG will develop a novel class of fluorescent silica particles with potential applications in display, sensing, photonic, and imaging technologies. These particles will be integrated into a variety of 2D and 3D photonic structures to explore new concepts that control the flow of light and enhance light-matter interactions.

IRG 3 Dynamics of Growth of Complex Materials (Co-Leaders: George Malliaras and David Muller)
Investigates nonequilibrium growth processes for multilayer heterostructures of complex materials (e.g., multicomponent oxides, organic semiconductors) to enable growth with single layer precision.

IRG 4 Atomic Membranes as Molecular Interfaces (Co-Leaders: Paul McEuen and Jiwoong Park)
Investigates the mechanical, thermal, optical, and electronic properties of atomic membranes: mechanically robust, freestanding films of material as thin as a single atom. In addition, these membranes are studied as atomically thin interfaces between different environments, such as gas/vacuum or liquid/gas.

Harvard University - Materials Research Center (Director: David Weitz)
This MRSEC supports a broad interdisciplinary research program that investigates the mechanical properties of thin films at scales intermediate between atomistic and continuum, focuses on understanding the mechanical properties of the cell and its structural components, and explores innovative ways of self-assembly of soft materials. The MRSEC operates a broad education and outreach research program that includes summer research experiences for undergraduates and teachers, activities for K-12 students, and programs to enhance the participation of members of underrepresented groups in science and engineering at the graduate, postgraduate level, and faculty levels.

IRG 1 Multiscale Mechanics of Films and Interfaces (Leader: Frans Spaepen)
The goal of this IRG is to investigate the behavior of thin films, with an emphasis on new classes of thin films.

IRG 2 Engineering Materials and Techniques for Biological Studies at Cellular Scales (Leader: George Whitesides)
Focuses on the understanding of the mechanical properties of the cell and its structural components.

IRG 3 Interface-Mediated Assembly of Soft Materials (Leader: Michael Brenner)
The goal of this IRG is to use directed self-assembly to create new structures for use in encapsulation and other areas, and to discover the physics of this directed assembly.

Johns Hopkins University - MRSEC (Director: Chia-Ling Chien)
The Center conducts fundamental research on nanostructures that exhibit enhanced magneto-electronic properties due to the intricate structure of the entities and the interplay of the constituent materials. Topics of interest include highly spin polarized materials, materials with high magnetocrystalline anisotropy, spin interconnects/injection and lateral devices, and novel nanostructures including spintronic devices. The MRSEC has active collaborations with industrial partners, particularly those in magnetic recording, national labs and research institutions. Educational outreach is aimed at undergraduates, high school teachers and students, middle school students, and local communities.
University of Maryland, College Park - Center for Oxide Thin Films, Probes and Surfaces (Director: Ellen Williams)
The Maryland MRSEC carries out nationally recognized fundamental research on surfaces and interfaces of materials with potential impact on the next generation of opto- and nano-electronic devices, and on complex oxides with potential applications in memory, switches and sensors. The research is closely integrated with a continuing educational outreach program that has a direct impact on the education of a diverse population of K – 12 students and teachers.

IRG 1 Low-Dimensional Interfaces (Leader: Ellen Williams)
The goal of this research program is to understand and exploit the special statistical and low-dimensional characteristics of junctions between ultra-thin films of electro-optic and nano-electronic materials to create novel device properties.

IRG 2 Multifunctional Magnetic Oxides (Leader: Dennis Drew)
This IRG uses state of the art growth techniques, a comprehensive range of characterization tools and advanced theoretical analysis to understand the fundamental processes in multiferroic magnetic oxides, and develops and tests device concepts for their exploitation.

University of Massachusetts-Amherst - Center for Polymer Science and Engineering (Director: Thomas P. Russell)
The MRSEC supports a broad interdisciplinary program in the area of polymer science and engineering. The Center has strong ties to industry through its industrial affiliates program, maintains effective education and outreach programs with emphasis on undergraduate, K-12 and teacher education and strong links to near-by women’s colleges, and has an active international program with centers in Korea and Europe.

IRG 1 Tailored Interfaces (Leader: Thomas P. Russell)
Focuses on the control of interfacial interactions to manipulate the structure, properties and functionality of thin polymer films.

IRG 2 Structured Materials in Supercritical Fluids (Co-Leader: James J. Watkins and Thomas McCarthy)
Centers on the use of supercritical CO₂ to control diffusion, thermodynamics and interfacial interactions so as to enable new technologies.

IRG 3 Aqueous Polymer Assembly (Co-Leaders: D.A. Hoagland and M. Muthukumar)
Investigates the assembly of polymers in aqueous solutions by understanding the influences of various forces (electrostatic, hydrophobic, hydrodynamic, etc) with the objective of predicting the material structure over multiple length scales.

Massachusetts Institute of Technology - Center for Materials Science and Engineering (Director: Michael Rubner)
The MRSEC supports a broad-based interdisciplinary research program with emphasis on micro- and nanostructurated materials in the areas of photonics, polymer assemblies, and semiconductor and magnetic structures. The Center also investigates the science and engineering of solid-state portable power sources with the potential application of developing high performance batteries. Sub-IRG sized initiatives focus on organic electronics and exotic states of correlated electron systems. The Center has a strong education program directed toward graduate students, undergraduates, middle and high school students and K-12 teachers. Emphasis is placed on including underrepresented minorities in these programs. The Center operates widely accessible shared facilities and has an effective industrial outreach program.
IRG 1 Microphotonic Materials and Structures (Leader: John D. Joannopoulos)
Experimental and theoretical investigation of “photonic crystals,” to discover physical phenomena associated with photon states that have never been possible before, and to exploit this knowledge with ultimate aim the design, fabrication, and characterization of novel devices and components.

IRG 2 Nanostructured Polymer Assemblies (Leader: Anne Mayes)
Seeks to control the way polymers and polymer nanocomposites with functional electronic, optical and bio-interface, polymer systems organize at the molecular and nanoscale levels leading to the enhanced performance of electronic, magnetic, biosensor and optical devices.

IRG 3 Electronic Transport in Mesoscopic Semiconductor and Magnetic Structures (Leader: Mounig Bawendi)
Explores charge and spin transport in solid-state electronic structures whose building blocks are in the nanometer size regime. The group is currently exploring chemically produced nanocrystal assemblies as well as lithographically defined nanostructures.

IRG 4 Science and Engineering of Solid-State Portable Power Structures (Leader: Gerbrand Ceder)
This IRG seeks to develop basic science of materials for solid-state electrochemical power sources, and to use it to design devices with superior energy and power-delivery capabilities.

University of Minnesota – Materials Research Science and Engineering Center (Director: Timothy P. Lodge).
Research in the Center is organized into three research groups on microstructured polymers, crystalline organic semiconductors, and magnetic heterostructures. The Center benefits from extensive materials synthesis and characterization facilities and supports a strong education outreach program to four-year colleges with emphasis on the Native American community in the region.

IRG 1 Microstructured Polymers (Leader: Marc Hillmyer)
This IRG uses block copolymers to direct the structure and function of microstructured macromolecular materials, with control over chemical connectivity, microstructure length scales, and morphology from the nanometer to micron region.

IRG 2 Crystalline Organic Semiconductors (Leader: C. Daniel Frisbie)
This IRG aims to create crystalline organic semiconductors with enhanced performance in field effect transistors.

IRG 3 Magnetic Heterostructures (Leader: Paul A. Crowell)
The focus of this research is to develop a fundamental understanding of interfaces in magnetic heterostructures, with an emphasis on spin transport and magnetization dynamics.

P-IRG Nanoparticle Based Materials (Leader: Uwe Kortshagen)
This proto-IRG focuses on questions such as whether electronic and optical properties of nanoparticles are determined by the particle surface or by bulk properties, whether the properties of the particle surface can be modified by organic or inorganic passivation of interface states, and whether heterojunction interfaces can be tailored through organic or inorganic passivation of interface states.

University of Nebraska- Quantum and Spin Phenomena in Nanomagnetic Structures (Director: Evgeny Tsymbal)
The Center supports an interdisciplinary research program on nanomagnetism with an emphasis on the study of interactions between magnetic dots or clusters and spin transport across nanocontacts and interfaces. The research involves strong collaborations with industry as well as international partners. The Center’s educational outreach efforts include research experiences for teachers and for faculty-student teams from predominantly undergraduate institutions.
IRG 1 Nanomagnetism: Fundamental Interactions and Applications (Leader: David Sellmyer)
Focuses on synthesizing and studying novel patterned structures and the investigation of magnetic interactions in cluster-assembled systems. Theory provides a bridge between electronic structure calculations and micromagnetic calculations of nonequilibrium extrinsic properties.

IRG 2 Spin Polarization and Transmission at Nanocontacts and Interfaces (Leader: Christian Binek)
The goal is to synthesize nanoscale magnetic contacts and to investigate and develop a new class of spin injectors with very high spin polarization. Metal point contacts and metal / organic interfaces are investigated.

Northwestern University - Materials Research Science & Engineering Center
(Director: Monica Olvera de la Cruz)
The Center supports an interdisciplinary research program on materials with an emphasis on the nanoscale. The Center features a strong pre-college education program, including the widely disseminated Materials World Modules (MWM), as well as outstanding undergraduate and graduate educational opportunities. The science teachers who participate in the summer research program represent middle schools, high schools and community colleges and many actively collaborate with the Center throughout the school year.

IRG 1 Synergistic Linear and Nonlinear Phenomena in Multifunctional Oxide Ceramic Systems
(Co-Leaders: Vinayak Dravid and Bruce Wessels)
Studies and exploits the unique attributes of oxide materials that result simultaneously in two or more functionalities (electronic, photonic, and magnetic).

IRG 2 Novel Methods for Nanostructured Polymer Blends and Composites (Leader: Ken Shull)
Studies the roles of non-equilibrium mechanical forces and equilibrium thermodynamics on the nanoscale structure and macroscale properties of polymer blends and composites resulting from gradient copolymerization, thermoreversible gelcasting, and solid-state shear pulverization.

IRG 3 Plasmonics and Molecular Based Electronics: Fundamentals and New Tools (Leader: Rick Van Duyne)
Studies nanoparticles that act as plasmonic switches and develops nanoscale optical characterization tools for investigating conductor-molecule-conductor junctions that lie at the heart of molecule based electronics.

University of Oklahoma/University of Arkansas – Center for Semiconductor Physics in Nanostructures (Director: Matthew Johnson)
The Center, a collaboration between the Universities of Oklahoma and of Arkansas, supports an interdisciplinary research program on semiconductor nanostructure science and applications. The Center is engaged in a number of educational activities from the graduate to the middle school level, including support for workshops for middle and high school science teachers.

IRG 1 Collective Properties of Nanostructure Arrays (Leader: Greg Salamo)
Control over semiconductor and ferroelectric materials growth will yield systems that give new insight into the collective interactions between individual quantum dots, wires and rings, and will provide the basis for new optical and electronic materials.
IRG 2 Mesoscopic Narrow Gap Systems (Leader: Michael Santos)
Explores the unique properties of narrow bandgap semiconductor materials to address
nanoscale electronic devices that exploit quantum mechanical effects for higher speed
operation, denser memory with increased functionality.

University of Pennsylvania - Laboratory for Research on the Structure of Matter
(Director: Michael Klein)
The MRSEC integrates the design, synthesis, characterization, theory & modeling of materials
ranging from hybrid macro-molecules and de novo proteins, with architectures & functions inspired
by nature, to nano- and micro-structured hard & soft materials with unique properties. Potential
practical outcomes are in the areas of drug delivery, energy transduction, electronics, sensors, and
cellular probes. The MRSEC sustains an array of education and human resources development
programs, whose impact will range from K-12 students and their teachers to undergraduates and
faculty at minority serving institutions.

IRG 1 Filamentous Networks and Structured Gels (Co-Leaders: Shu Yang and Arjun Yodh)
Explores the properties of filamentous networks with a goal to design & synthesize
responsive network materials.

IRG 2 Functional Cylindrical Assemblies (Co-Leaders: Dennis Discher and Andrea Liu)
Synthesizes semi-flexible, functional cylinders, composed of dendrimer-based polymers &
self-assembling block copolymers with the aim of understanding the fundamental properties
if diverse macromolecule-based cylinders.

IRG 3 Synthetic Programmable Membranes (Co-Leaders William DeGrado and Daniel Hammer)
Biological and bio-inspired synthetic approaches will be used to design highly stable
membrane bilayers and integrate into them functional components such as ion channels, pH
sensing receptors, and signal transducers.

IRG 4 De Novo Synthetic Protein Modules for Light-Capture & Catalysis (Co-Leaders: Kent Blasie
and Leslie Dutton)
Draws on the rich biological resource of atomic-level structures and functional mechanisms
to guide design & synthesis of novel proteins as modular nano-scale materials. These self-
assembling modules will be constructed to couple light energy to conservative oxidative and
reductive catalysis.

IRG 5 Oxide-based Hierarchical Interfacial Materials (Co-Leaders: James Kikkawa and I-Wei
Chen)
Studies the interfaces within ordered alloys of bulk perovskite phases, layered superlattices,
oxide-metal hybrids, and between oxide surfaces and molecular adsorbates.

Penn State University – Center for Nanoscale Science (Director: Tom Mallouk)
The MRSEC supports research in molecular nanofabrication, biological and synthetic molecular
motors, and collective phenomena in restricted geometries. The Center partners with the Penn State
node of the National Nanofabrication Users Network enabling the fabrication and characterization of
nanoscale condensed matter systems. The Center supports a full range of education activities ranging
from the graduate level to K-12 teachers and students and education programs for the public. In
partnership with the Franklin Institute Science Museum in Philadelphia the Penn State MRSEC
created and sponsored a show called “Materials Matter” that is being exhibited currently on a weekly
basis in 23 science museums nationwide.
IRG 1 Chemical Patterning and Nano Structures (Leader: Paul Weiss)
This IRG exploits self- and directed assembly, and selective chemistry in combination with conventional and other nanolithography tools to push forward fabrication techniques of devices with dimensions on the order and larger than 10 nm. The two inter-related research themes of this IRG are molecular rulers and chemical patterning.

IRG 2 Molecular and Nanoscale Motors (Leader: Vincent Crespi)
The goal of IRG 2 is to understand and control of micro- and nanoscale movement. By investigating three classes of motors - catalytic, biological and synthetic – the IRG endeavors to bring the study of dynamic nanoscale processes into the realm of engineering science and physics.

IRG 3 Electrons in Confined Geometries (Leader: Moses Chan)
IRG3 focuses on the electronic properties of confined systems. Ongoing projects include the study of superconducting and semiconducting nanowires, ferroelectric thin films and a new effort on graphene sheets. These activities are complemented by a synthetic effort in low dimensional nanostructures.

IRG 4 Optical Metamaterials (Leader: Theresa Mayer)
This IRG combines techniques for making composite materials with periodicity on the order of the wavelength of light, with computational modeling tools to explore new physics and new applications.

Princeton University - Center for Complex Materials (Director: Richard Register)
The components of the Center pursue a common theme of synthesizing and characterizing materials at the nano-, meso- and microscale. The Center has a strong outreach program to pre-college students and teachers and to local museums. Industrial and national laboratory interactions also play an important role.

IRG 1 Interplay of Magnetism and Transport in Correlated Electronic Materials (Co-Leaders: Robert. Cava and N. Phuan Ong)
Focused on charge and spin transport in complex, correlated electron materials such as metallic pyrochlores, chalcogenide spinels and diluted magnetic semiconductors.

IRG 2 Guided Self-Assembly (Co-Leaders: A.Z. (Thanos) Panagiotopoulos and Richard Register)
This IRG examines different synthesis schemes for self-assembly such as lithographically induced self-assembly, field assisted templating, and block copolymer nanopatterning.

IRG 3 Adhesion, Deformation and Transport at Contacts in Small Structures (Co-Leaders: Antoine Kahn and T Kyle Vanderlick)
This focus is to develop the multi-disciplinary science that governs the fabrication and operation of a broad class of new, small-scale devices that depend upon electrical contacts.

The University of Southern Mississippi – Center for Response-Driven Polymeric Films (Director: Marek W. Urban)
This Center focuses on interdisciplinary research on thin polymeric films and organic coatings. Research, with strong international collaborations, addresses fundamental aspects of “smart” coatings that will be critical to many disciplines. The Center supports high school and undergraduate summer research educational activities with the emphasis on hands-on experience as well as distance learning with web-based tutorials and new laboratory courses. Industrial component also plays an important role and numerous projects conducted within the Center have strong industrial relevance.
IRG 1 Design and Synthesis of Response Driven Macromolecules (Leader: Sabine Heinhorst)
This IRG is concerned with design, synthesis, and understanding of molecular processes in biomaterials, self-assembling amphipatic protein films, film formation of membrane forming proteins, synthesis of water-soluble and liquid crystalline polymers as well as colloidal dispersions that mimic biosystems or exhibit stimuli-responsive characteristics.

IRG 2 Responsive Films and Film Formation (Leader: Charles E. Hoyle)
This IRG focuses on the fundamental aspects and molecular level processes leading to film formation as well as chemico-physical and environmental conditions responsible for the formation of stimuli-responsive “smart” polymeric films and coatings. Another significant component is the development of novel spectroscopic, morphological, and rheological characterization techniques that will enable better understanding of stimuli-responsive polymeric coatings.

Stanford University / IBM-Almaden / University of California-Davis / UC Berkeley - Center for Polymer Interfaces and Macromolecular Assemblies (Director: Curtis Frank)
The Center is a partnership between Stanford University, UC Davis, UC Berkeley and the IBM Almaden Research Laboratory. Research, with strong international collaborations, is focused in the areas of nanostructured and interfacial molecular and biomolecular materials with potential applications in nanotemplating, photovoltaics, catalysis, and artificial membranes. The Center supports undergraduate summer research activities in academic and industrial settings as well as in science museum projects with plans to increase the participation of physically disabled students. The K-12 programs for teachers and students include partnerships with area schools.

IRG 1 Synthesis and Application of Nanostructured Materials (Co-Leaders: Jim Hedrick and Bob Waymouth)
This IRG aims to develop new synthetic and theoretical methodology for the preparation and study of functional macromolecules with unparalleled architectural control.

IRG 2 Structure and Dynamics of Polymeric and Biomolecular Materials at Interfaces (Co-Leaders: Marjorie Longo and Eric Shaqfeh).
IRG-2 focuses on the fabrication and in-situ observation of dynamic interfaces. Emphasis is placed on microfluidic and nanofluidic molecular processing of materials. Although inspiration often comes from biomolecular systems such as phospholipid membranes or DNA assemblies, the applications are broad and include lubrication, emulsion stability, and polymer processing.

This IRG focuses on the control and characterization of interfacial charge transport in directed nanoassemblies. This research is motivated by basic issues that relate to the performance of organic electronic devices, including photovoltaics, field-effect transistors, biological sensors, and memory elements.

University of Washington – Genetically Engineered Materials Science and Engineering Center (Director: Mehmet Sarikaya)
This MRSEC supports innovative research and education that integrates modern molecular biology with state of the art chemical synthesis to construct hybrid materials exhibiting properties that cannot be achieved through either traditional biological or chemical routes. The center is developing coordinated activities in graduate and undergraduate education and outreach, establish an international network of laboratories sharing a common interest in molecular biomimetics, and
partner with industry and national laboratories to translate fundamental discoveries into new products realities. The MRSEC conducts a unique outreach program to Native Americans in the Seattle area.

University of Wisconsin-Madison - Nanostructured Materials and Interfaces
(Director: Juan DePablo)

The Center carries out research on the synthesis, characterization, and exploitation of nanostructured interfaces over a wide array of applications, including ultrathin silicon electronics, contacts between organic and traditional semiconductors, and cell substrates for the control of stem cell differentiation. The center supports a vibrant education and outreach program aimed at K-12 students and teachers, college-level learners, and the public. As part of its educational initiative, the Center actively produces instructional materials for integrating materials science and engineering into pre-college, college, and graduate curricula that are currently in use throughout the world.

IRG 1 *Silicon Based Nanomembrane Materials (Co-Leaders: Max Lagally and Robert Blick)*

Explores the science and technology of membranes so thin that the thinness determines the structure and topography, and creates unique electronic, mechanical, chemical, and defect properties. Ultra-thin silicon and strain engineering allow a vision of a new field of investigation – fundamental studies of extremely thin semiconductor membranes – with potentially significant technological outcomes.

IRG 2 *Functional Organic-Inorganic Electronic Interfaces (Co-Leaders: Tom Kuech and Robert Hamers)*

Design, fabricate, and characterize interfaces between inorganic materials and organic molecular structures in order to achieve a high level of control over their structural and electronic properties, critical to a broad spectrum of applications from sensing to lighting.

IRG 3 *Nanostructured Interfaces to Biology (Co-Leaders: Nick Abbott and Paul Bertics)*

Designs polymeric and liquid-crystalline materials that provide both spatial and temporal control over the chemical functionality and physical properties of interfaces of synthetic materials presented to biological systems, including proteins, viruses and human embryonic stem cells.

Yale University – Center for Research on Interface Structure and Phenomena
(Director: John Tully)

This Center addresses the electronic, magnetic and chemical properties of complex oxides and their interfaces, along with possible applications in areas such as magnetic storage, "spintronics", chemical sensing and electronic devices. The Center partners with Southern Connecticut State University in their education and outreach activities in the New Haven area.
For additional information:

- Visit the web sites of the individual Centers; most are linked to the NSF web site.
 http://www.mrsec.org

- Contact one of the NSF Program Directors:

 Rama Bansil Maija M. Kukla
 rbansil@nsf.gov mkukla@nsf.gov
 Phone: (703) 292-8562 Phone: (703) 292-4940
 Fax: (703) 292-9036 Fax: (703) 292-9036

 Thomas Rieker Charles Ying
 tricker@nsf.gov cying@nsf.gov
 Phone: (703) 292-4914 Phone: (703) 292-8428
 Fax: (703) 292-9036 Fax: (703) 292-9036

- Contact the Center Director (information below)
U. of Alabama
Director: William H. Butler
wbutler@mint.ua.edu
Box 870209
Tuscaloosa, AL 35487-0104
Tel: (205) 348-2665
FAX: (205) 348-2346
Brown U.
Director: William A. Curtin
William.curtin@brown.edu
Providence, RI 02912
Tel: (401) 863-1418
FAX: (401) 863-9025
UC Santa Barbara
Director: Craig Hawker
hawker@mrl.ucsb.edu
Materials Research Lab, MC-5121
Santa Barbara, CA 93106
Tel: (805) 893-7161
FAX: (805) 893-8797
Caltech
Director: Harry A. Atwater
haai@caltech.edu
246 Watson, MC 128-95
Pasadena, CA 91125
Tel: (626) 395-2197
FAX: (626) 568-8743
Carnegie Mellon U.
Director: Gregory S. Rohrer
gr20@andrew.cmu.edu
MSE Dept.,
5000 Forbes Ave.
Pittsburgh, PA 15213
Tel: (412) 268-2696
FAX: (412) 268-3113
U. of Colorado
Director: Noel A. Clark
Noel.clark@colorado.edu
Department of Physics
Boulder, CO 80309-0390
Tel: (303) 492-6420
FAX: (303) 492-2998
Columbia U.
Director: Irving P. Herman
iph1@columbia.edu
202 S.W. Mudd
New York, NY 10027
Tel: (212) 854-4950
FAX: (212) 854-1909
Cornell U.
Director: Melissa Hines
director@ccmr.cornell.edu
627 Clark Hall
Ithaca, NY 14853
Tel: (607) 255-3040
FAX: (607) 255-3957
Harvard U.
Director: David Weitz
Weitz@deas.harvard.edu
Pierce Hall, Room 234
Cambridge, MA 02138
Tel: (617) 496-2842
FAX: (617) 495-9837
Johns Hopkins U.
Director: Chia-Ling Chien
clc@pha.jhu.edu
3400 North Charles St.
Baltimore, MD 21218
Tel: (410) 516-8092
FAX: (410) 516-7239
Penn State University
Director: Tom Mallouk
tom@chem.psu.edu
318 Bowen Hall
University Park, PA 16802
Tel: (814) 863-9637
FAX: (814) 865-3604
MIT
Director: Michael Rubner
rubner@mit.edu
Center for Materials Science and Engineering, Room 13-2106
77 Massachusetts Ave
Cambridge, MA 02139-4037
Tel: (617) 253-6701
FAX: (617) 258-6478
U. of Massachusetts-Amherst
Director: Thomas Russell
russell@mail.pse.umass.edu
Dept. Polymer Science and Eng.
Amherst, MA 01003
Tel: (413) 577-1516
FAX: (413) 577-1510
U. of Minnesota
Director: Timothy P. Lodge
lodge@chem.umn.edu
Dept. of Chemistry
Minneapolis, MN 55455
Tel: (612) 626-0798
FAX: (612) 626-7805
Northwestern U.
Director: Monica Olvera de la Cruz
m-olvera@northwestern.edu
2145 Sheridan Rd.
K 1-11, First Floor
Evanston, IL 60208-3108
Tel.: (847) 491-3606
FAX: (847) 467-6727
U. of Nebraska
Director: Evgeny Y. Tsymbal
tsymbal@unl.edu
Dept. of Physics and Astronomy
213E Ferguson Hall
Lincoln, NE 68588
Tel: (402) 472-2586
FAX: (402) 472-2879
U. of Oklahoma / U. of Arkansas
Director: Matthew Johnson
johnson@mail.nhn.ou.edu
Dept. of Physics, 440 W. Brooks
Norman, OK 73019
Tel: (405) 325-3961
FAX: (405) 325-7557
U. of Pennsylvania
Director: Michael Klein
klein@lrsn.upenn.edu
3231 Walnut St.
Philadelphia, PA 19104
Tel: (215) 898-8571
FAX: (215) 898-8296
Penn State University
Director: Tom Mallouk
tom@chem.psu.edu
Center for Nanoscale Science
104 Davey Laboratory
University Park, PA 16802
Tel: (814) 863-9637
FAX: (814) 865-3604
Princeton U.
Director: Richard Register
register@princeton.edu
318 Bowen Hall
Princeton, NJ 08544
Tel: (609) 258-4691
FAX: (609) 258-0211
U. of Southern Mississippi
Director: Marek W. Urban
Marek.Urban@usm.edu
S.S. Box 10076
Hattiesburg, MS 39406-0076
Tel: (601) 266-6454
FAX: (601) 266-5504
Stanford/IBM-Alm/UC Davis
Director: Curtis Frank
curt@chemeng.stanford.edu
Dept. of Chemical Engineering
Keck Bldg. 183
Stanford, CA 94305-5025
Tel: (650) 723-4573
FAX: (650) 723-9780
U. of Washington
Director: Mehmet Sarikaya
sarikaya@u.washington.edu
Materials Science and Eng.
Roberts Hall, Box 352120
Seattle, WA 98195
Tel: (206) 543-0724
FAX: (206) 543-3100
U. of Wisconsin
Director: Juan DePablo
Depablo@engr.wisc.edu
1415 Engineering Dr.
Madison, WI 53706
Tel: (608) 262-7727
FAX: (608) 265-3782
Yale University
Director: John Tully
John.tully@yale.edu
P.O. Box 208107
New Haven, CT 06520
Tel: (203) 432-3934-8107
FAX: (203) 432-6144